Source code for dig.threedgraph.dataset.PygQM93D

import os.path as osp
import numpy as np
from tqdm import tqdm
import torch
from sklearn.utils import shuffle

from torch_geometric.data import InMemoryDataset, download_url
from torch_geometric.data import Data, DataLoader


[docs]class QM93D(InMemoryDataset): r""" A `Pytorch Geometric <https://pytorch-geometric.readthedocs.io/en/latest/index.html>`_ data interface for :obj:`QM9` dataset which is from `"Quantum chemistry structures and properties of 134 kilo molecules" <https://www.nature.com/articles/sdata201422>`_ paper. It connsists of about 130,000 equilibrium molecules with 12 regression targets: :obj:`mu`, :obj:`alpha`, :obj:`homo`, :obj:`lumo`, :obj:`gap`, :obj:`r2`, :obj:`zpve`, :obj:`U0`, :obj:`U`, :obj:`H`, :obj:`G`, :obj:`Cv`. Each molecule includes complete spatial information for the single low energy conformation of the atoms in the molecule. .. note:: We used the processed data in `DimeNet <https://github.com/klicperajo/dimenet/tree/master/data>`_, wihch includes spatial information and type for each atom. You can also use `QM9 in Pytorch Geometric <https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/qm9.html#QM9>`_. Args: root (string): the dataset folder will be located at root/qm9. transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) pre_filter (callable, optional): A function that takes in an :obj:`torch_geometric.data.Data` object and returns a boolean value, indicating whether the data object should be included in the final dataset. (default: :obj:`None`) Example: -------- >>> dataset = QM93D() >>> target = 'mu' >>> dataset.data.y = dataset.data[target] >>> split_idx = dataset.get_idx_split(len(dataset.data.y), train_size=110000, valid_size=10000, seed=42) >>> train_dataset, valid_dataset, test_dataset = dataset[split_idx['train']], dataset[split_idx['valid']], dataset[split_idx['test']] >>> train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) >>> data = next(iter(train_loader)) >>> data Batch(Cv=[32], G=[32], H=[32], U=[32], U0=[32], alpha=[32], batch=[579], gap=[32], homo=[32], lumo=[32], mu=[32], pos=[579, 3], ptr=[33], r2=[32], y=[32], z=[579], zpve=[32]) Where the attributes of the output data indicates: * :obj:`z`: The atom type. * :obj:`pos`: The 3D position for atoms. * :obj:`y`: The target property for the graph (molecule). * :obj:`batch`: The assignment vector which maps each node to its respective graph identifier and can help reconstructe single graphs """ def __init__(self, root = 'dataset/', transform = None, pre_transform = None, pre_filter = None): self.url = 'https://github.com/klicperajo/dimenet/raw/master/data/qm9_eV.npz' self.folder = osp.join(root, 'qm9') super(QM93D, self).__init__(self.folder, transform, pre_transform, pre_filter) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_file_names(self): return 'qm9_eV.npz' @property def processed_file_names(self): return 'qm9_pyg.pt'
[docs] def download(self): download_url(self.url, self.raw_dir)
[docs] def process(self): data = np.load(osp.join(self.raw_dir, self.raw_file_names)) R = data['R'] Z = data['Z'] N= data['N'] split = np.cumsum(N) R_qm9 = np.split(R, split) Z_qm9 = np.split(Z,split) target = {} for name in ['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve','U0', 'U', 'H', 'G', 'Cv']: target[name] = np.expand_dims(data[name],axis=-1) # y = np.expand_dims([data[name] for name in ['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve','U0', 'U', 'H', 'G', 'Cv']], axis=-1) data_list = [] for i in tqdm(range(len(N))): R_i = torch.tensor(R_qm9[i],dtype=torch.float32) z_i = torch.tensor(Z_qm9[i],dtype=torch.int64) y_i = [torch.tensor(target[name][i],dtype=torch.float32) for name in ['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve','U0', 'U', 'H', 'G', 'Cv']] data = Data(pos=R_i, z=z_i, y=y_i[0], mu=y_i[0], alpha=y_i[1], homo=y_i[2], lumo=y_i[3], gap=y_i[4], r2=y_i[5], zpve=y_i[6], U0=y_i[7], U=y_i[8], H=y_i[9], G=y_i[10], Cv=y_i[11]) data_list.append(data) if self.pre_filter is not None: data_list = [data for data in data_list if self.pre_filter(data)] if self.pre_transform is not None: data_list = [self.pre_transform(data) for data in data_list] data, slices = self.collate(data_list) print('Saving...') torch.save((data, slices), self.processed_paths[0])
def get_idx_split(self, data_size, train_size, valid_size, seed): ids = shuffle(range(data_size), random_state=seed) train_idx, val_idx, test_idx = torch.tensor(ids[:train_size]), torch.tensor(ids[train_size:train_size + valid_size]), torch.tensor(ids[train_size + valid_size:]) split_dict = {'train':train_idx, 'valid':val_idx, 'test':test_idx} return split_dict
if __name__ == '__main__': dataset = QM93D() print(dataset) print(dataset.data.z.shape) print(dataset.data.pos.shape) target = 'mu' dataset.data.y = dataset.data[target] print(dataset.data.y.shape) print(dataset.data.y) print(dataset.data.mu) split_idx = dataset.get_idx_split(len(dataset.data.y), train_size=110000, valid_size=10000, seed=42) print(split_idx) print(dataset[split_idx['train']]) train_dataset, valid_dataset, test_dataset = dataset[split_idx['train']], dataset[split_idx['valid']], dataset[split_idx['test']] train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) data = next(iter(train_loader)) print(data)