"""
The GOOD-Motif dataset motivated by `Spurious-Motif
<https://arxiv.org/abs/2201.12872>`_.
"""
import os
import os.path as osp
import gdown
import torch
from munch import Munch
from torch_geometric.data import InMemoryDataset, extract_zip
[docs]class GOODMotif(InMemoryDataset):
r"""
The GOOD-Motif dataset motivated by `Spurious-Motif
<https://arxiv.org/abs/2201.12872>`_.
Args:
root (str): The dataset saving root.
domain (str): The domain selection. Allowed: 'basis' and 'size'.
shift (str): The distributional shift we pick. Allowed: 'no_shift', 'covariate', and 'concept'.
subset (str): The split set. Allowed: 'train', 'id_val', 'id_test', 'val', and 'test'. When shift='no_shift',
'id_val' and 'id_test' are not applicable.
generate (bool): The flag for regenerating dataset. True: regenerate. False: download.
"""
def __init__(self, root: str, domain: str, shift: str = 'no_shift', subset: str = 'train', transform=None,
pre_transform=None, generate: bool = False):
self.name = self.__class__.__name__
self.domain = domain
self.metric = 'Accuracy'
self.task = 'Multi-label classification'
self.url = 'https://drive.google.com/file/d/15YRuZG6wI4HF7QgrLI52POKjuObsOyvb/view?usp=sharing'
self.generate = generate
self.all_basis = ["wheel", "tree", "ladder", "star", "path"]
self.basis_role_end = {'wheel': 0, 'tree': 0, 'ladder': 0, 'star': 1, 'path': 1}
self.all_motifs = [[["house"]], [["dircycle"]], [["crane"]]]
self.num_data = 30000
self.train_spurious_ratio = [0.99, 0.97, 0.95]
super().__init__(root, transform, pre_transform)
if shift == 'covariate':
subset_pt = 3
elif shift == 'concept':
subset_pt = 8
elif shift == 'no_shift':
subset_pt = 0
else:
raise ValueError(f'Unknown shift: {shift}.')
if subset == 'train':
subset_pt += 0
elif subset == 'val':
subset_pt += 1
elif subset == 'test':
subset_pt += 2
elif subset == 'id_val':
subset_pt += 3
else:
subset_pt += 4
self.data, self.slices = torch.load(self.processed_paths[subset_pt])
@property
def raw_dir(self):
return osp.join(self.root)
def _download(self):
if os.path.exists(osp.join(self.raw_dir, self.name)) or self.generate:
return
if not os.path.exists(self.raw_dir):
os.makedirs(self.raw_dir)
self.download()
[docs] def download(self):
path = gdown.download(self.url, output=osp.join(self.raw_dir, self.name + '.zip'), fuzzy=True)
extract_zip(path, self.raw_dir)
os.unlink(path)
@property
def processed_dir(self):
return osp.join(self.root, self.name, self.domain, 'processed')
@property
def processed_file_names(self):
return ['no_shift_train.pt', 'no_shift_val.pt', 'no_shift_test.pt',
'covariate_train.pt', 'covariate_val.pt', 'covariate_test.pt', 'covariate_id_val.pt',
'covariate_id_test.pt',
'concept_train.pt', 'concept_val.pt', 'concept_test.pt', 'concept_id_val.pt', 'concept_id_test.pt']
[docs] @staticmethod
def load(dataset_root: str, domain: str, shift: str = 'no_shift', generate: bool = False):
r"""
A staticmethod for dataset loading. This method instantiates dataset class, constructing train, id_val, id_test,
ood_val (val), and ood_test (test) splits. Besides, it collects several dataset meta information for further
utilization.
Args:
dataset_root (str): The dataset saving root.
domain (str): The domain selection. Allowed: 'degree' and 'time'.
shift (str): The distributional shift we pick. Allowed: 'no_shift', 'covariate', and 'concept'.
generate (bool): The flag for regenerating dataset. True: regenerate. False: download.
Returns:
dataset or dataset splits.
dataset meta info.
"""
meta_info = Munch()
meta_info.dataset_type = 'syn'
meta_info.model_level = 'graph'
train_dataset = GOODMotif(root=dataset_root,
domain=domain, shift=shift, subset='train', generate=generate)
id_val_dataset = GOODMotif(root=dataset_root,
domain=domain, shift=shift, subset='id_val',
generate=generate) if shift != 'no_shift' else None
id_test_dataset = GOODMotif(root=dataset_root,
domain=domain, shift=shift, subset='id_test',
generate=generate) if shift != 'no_shift' else None
val_dataset = GOODMotif(root=dataset_root,
domain=domain, shift=shift, subset='val', generate=generate)
test_dataset = GOODMotif(root=dataset_root,
domain=domain, shift=shift, subset='test', generate=generate)
meta_info.dim_node = train_dataset.num_node_features
meta_info.dim_edge = train_dataset.num_edge_features
meta_info.num_envs = torch.unique(train_dataset.data.env_id).shape[0]
# Define networks' output shape.
if train_dataset.task == 'Binary classification':
meta_info.num_classes = train_dataset.data.y.shape[1]
elif train_dataset.task == 'Regression':
meta_info.num_classes = 1
elif train_dataset.task == 'Multi-label classification':
meta_info.num_classes = torch.unique(train_dataset.data.y).shape[0]
# --- clear buffer dataset._data_list ---
train_dataset._data_list = None
if id_val_dataset:
id_val_dataset._data_list = None
id_test_dataset._data_list = None
val_dataset._data_list = None
test_dataset._data_list = None
return {'train': train_dataset, 'id_val': id_val_dataset, 'id_test': id_test_dataset,
'val': val_dataset, 'test': test_dataset, 'task': train_dataset.task,
'metric': train_dataset.metric}, meta_info